Монтаж контура заземления и молниезащиты
Заземление и молниезащита представляют собой комплекс конструктивных элементов и частей, которые обеспечивают соединение частей зданий и корпусов электроустановок с эквивалентом земли. Подобные технические мероприятия обеспечивают широкий перечень преимуществ:
- Сокращение уровня электромагнитных излучений высокой частоты.
- Снижение электрических помех в электрической сети.
- Минимизация риска поражения человека электрическим током.
- Обеспечение нормальной работы средств автоматической защиты от коротких замыканий.
- Отвод разрядов молнии от попадания на здания и сооружения.
В соответствии с законодательством РФ все здания жилого и производственного назначения, где применяется электрооборудование, в обязательном порядке комплектуются средствами заземления и молниезащиты.
Конфигурация защитных систем подбирается с учетом компоновки электрической сети, архитектурных особенностей объекта, типа фундамента и характеристик грунта, грозовой активности в регионе. Монтаж контура заземления и молниезащиты осуществляется с использованием специальной строительной техники и инструментов. Заказчик имеет возможность присутствовать при выполнении работ, что будет подтверждаться актами производства скрытых работ. По окончании строительно-монтажных работ обязательно проводят электрические измерения, которые помогут диагностировать наличие скрытых дефектов и подтвердят возможность ввода объекта в эксплуатацию.
Заземляющее устройство — это один из самых сложных объектов в электроэнергетике, потому что он многофункционален. Нет ни одного аппарата, прибора, машины, объекта в электроэнергетике, который выполнял бы сразу такое большое количество функций.
Заземление электроустановок – обязательная составляющая комплекса мер по защите промышленного оборудования и работающих на нем людей от поражения током. С учетом существующего разнообразия электротехнических приборов и агрегатов вопросам их безопасной эксплуатации уделяется повышенное внимание. Каждый тип заземляемого оборудования имеет свои особенности, вынуждающие пользователей сетей принимать специальные защитные меры. В соответствие с правилами заземления электроустановок и их устройством для этих целей применяются особым образом организованные системы защиты.
Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду (ПУЭ п. 1.7.15.)
Общепринятая классификация систем заземления осуществляется по следующим основным признакам:
- Состояние нейтрали электросети (заземленное или изолированное).
- Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
- Особенности подключения нагрузки к нейтральной жиле.
Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила устройства электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».
При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:
- TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
- TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
- TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.
На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности. В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.
В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:
при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.
Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:
- металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
- металлические кожуха кабелей, прокладываемых непосредственно в грунте;
- обычные металлические трубы (за исключением газовых и нефтепроводов);
- рельсы железнодорожных путей.
В зависимости от того, какие защитные меры приняты при работе с оборудованием, возможны следующие степени безопасности пользователя:
Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.
Резюмируя вышеизложенное, можно сделать следующие выводы. Традиционные методы заземления электроустановок применяют с самого начала электрификации. Но даже абсолютно правильно спроектированное и выполненное заземляющее устройство на основе изделий из черного металла не лишено серьезных недостатков, которые существенно ограничивают срок службы системы и ведут к значительному ухудшению характеристик сопротивления заземления с течением времени.
Стоит отметить, что для показателя сопротивления 4 Ом, в особенности на изолирующем основании, необходим монтаж большого количества заземлителей. Как правило, на объектах, где стоит подобное заземление, сопротивление далеко от этого показателя, и необходимо еще и еще набирать связки заземлителей, соединять их между собой, чтобы получить необходимое сопротивление, а это большое количество материала и большая площадь для установки заземления.
Неправильно выполненное заземление приводит к образованию нежелательных электромагнитных помех в работе оборудования и опасности поражения людей электрическим током.
Таким образом, при организации контура заземления, заказчикам и эксплуатирующим организациям, нужно думать не только о показателе сопротивления заземления на момент инсталляции, но и о дальнейшей эксплуатации данного контура заземления, и правильный выбор поможет избежать больших расходов и потерь в дальнейшем.